

 1

PEST++ Version 3.2 Input Instructions

The PEST++ Version 3 Visual Studio solution, as well as source code and executable as

documented in this report, are available for download at http://wi.water.usgs.gov/models/pestplusplus/.

More recent releases of PEST++, including any enhancements made since the publication of this report,

will be available at http://www.pestpp.org/. The most current development version of the source code is

maintained an online open-source version-control repository at https://github.com/dwelter/pestpp/.

In order to facilitate use by experienced PEST users, PEST++ adopts many of the conventions,

variable names, and output formats of the original PEST (Doherty, 2010). The intent is to make

PEST++ input and output compatible with the large number of existing PEST utilities (for example,

Doherty, 2011a,b).

The PEST++ Command Line

 PEST++ supports various command line options that control run manager invocation as well as

restart options. PEST++ Version 3 supports three run mangers to complete the forward model runs: (1)

Yet Another Run ManageR (YAMR), (2) GENIE, and (3) a serial run manager. YAMR and GENIE are

sophisticated parallel run managers capable of performing parallel runs on a single machine or over a

TCP/IP-enabled network. YAMR is integrated into PEST++ and is invoked similarly to BeoPEST

(Schreüder, 2009). Although PEST++ provides an interface to the GENIE run manager, this interface

relies on the external GMAN and GSLAVE programs (Muffles and others, 2012) to manage and

perform the actual model runs. The serial run manager provides a simple alternative that mimics the

http://www.pestpp.org/

 2

functionality currently in PEST. In addition to run manager specification, the command line also

controls the restart functionality of PEST++.

The various options related to run manger and restart control are summarized in table 1–1, where

/j and /r are optional commands; /j invokes Jacobian reuse for the first iteration, and /r invokes restart.

Table 1–1. Summary of PEST++ command line options.

Run Manger / Mode Command
Serial Run Manager / Master pest++.exe <casename>.pst [/j] [/r]

YAMR / Master pest++.exe <casename>.pst /H :<port> [/j] [/r]

YAMR / Worker Node pest++.exe <casename>.pst /H <hostname>:<port>

 or

pest++.exe <casename>.ymr /H <hostname>:<port>

GENIE / Master pest++.exe <casename>.pst /G <GENIE Master

hostname>:<port> [/j] [/r]

GENIE/Master genie.exe /port <port>

GENIE / Worker Node genie.exe /ip <GENIE Master IP address> /port

<port>

When PEST++ is run with the serial run manager or as the master node with a parallel run manager, it

now supports the /j option to reuse an existing binary Jacobian file rather than computing the Jacobian

for the first iteration. Note that PEST++ can be restarted by using a Jacobian computed by PEST as long

as the PEST++ “autonorm” option is not invoked in the control file.

 3

When PEST++ is used to involk the a YAMR worker node, the user has the option to specify an

abbreviated “.ymr” control file which contains only the relevant information pertaining to the worker

node rather than a full PEST++/PEST control file.

The Pest Control File

For ease of reference, variables within the PEST control file are listed below, and the variables

used by PEST++ are shaded. PEST++ relies on the structure of the PEST control file (Doherty, 2010) to

read the necessary algorithmic parameters and reads only those algorithmic parameters that are needed.

For example, there is no need to read the NOBS variable because each line in the “observation data”

section of the PEST control file specifies an observation; however, it is necessary to read the NPAR

variable to know where specification of parameters ends and information on tied parameters begins.

This list is followed by short explanation of each variable used by PEST++.

pcf

* control data

RSTFLE PESTMODE

NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]

NTPLFLE NINSFLE PRECIS DPOINT [NUMCOM JACFILE MESSFILE]

RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE] [LAMFORGIVE]

RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND] [ABSPARMAX]

 4

PHIREDSWH [NOPTSWITCH] [SPLITSWH] [DOAUI] [DOSENREUSE]

NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN]

[PHIABANDON]

ICOV ICOR IEIG [IRES] [JCOSAVE] [VERBOSEREC] [JCOSAVEITN] [REISAVEITN] [PARSAVEITN]

* automatic user intervention

MAXAUI AUISTARTOPT NOAUIPHIRAT AUIRESTITN

AUISENSRAT AUIHOLDMAXCHG AUINUMFREE

AUIPHIRATSUF AUIPHIRATACCEPT NAUINOACCEPT

* singular value decomposition

SVDMODE

MAXSING EIGTHRESH

EIGWRITE

* lsqr

LSQRMODE

LSQR_ATOL LSQR_BTOL LSQR_CONLIM LSQR_ITNLIM

LSQRWRITE

* svd assist

BASEPESTFILE

BASEJACFILE

SVDA_MULBPA SVDA_SCALADJ SVDA_EXTSUPER SVDA_SUPDERCALC SVDA_PAR_EXCL

 5

* sensitivity reuse

SENRELTHRESH SENMAXREUSE

SENALLCALCINT SENPREDWEIGHT SENPIEXCLUDE

* parameter groups

PARGPN MEINCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD [SPLITTHRESH SPLITRELDIFF

SPLITACTION]

(one such line for each of NPARGP parameter groups)

* parameter data

PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGPSCALE OFFSET DERCOM

(one such line for each of NPAR parameters)

PARNME PARTIED

(one such line for each tied parameter)

* observation groups

OBGNME [GTARG] [COVFLE]

(one such line for each of NOBSGP observation group)

* observation data

OBSNME OBSVAL WEIGHT OBGNME

(one such line for each of NOBS observations)

* derivatives command line

DERCOMLINE

 6

EXTDERFLE

* model command line

COMLINE

(one such line for each of NUMCOM command lines)

* model input/output

TEMPFLE INFLE

(one such line for each of NTPLFLE template files)

INSFLE OUTFLE

(one such line for each of NINSLFE instruction files)

* prior information

PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME

(one such line for each of NPRIOR articles of prior information)

* predictive analysis

NPREDMAXMIN [PREDNOISE]

PD0 PD1 PD2

ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH

ABSPREDSWH RELPREDSWH

NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP

* regularisation

 7

PHIMLIM PHIMACCEPT [FRACPHIM] [MEMSAVE]

WFINIT WFMIN WFMAX [LINREG][REGCONTINUE]

WFFAC WFTOL IREGADJ [NOPTREGADJ REGWEIGHTRAT [REGSINGTHRESH]]

* pareto

PARETO_OBSGROUP

PARETO_WTFAC_START PARETO_WTFAC_FIN NUM_WTFAC_INC

NUM_ITER_START NUM_ITER_GEN NUM_ITER_FIN

ALT_TERM

OBS_TERM ABOVE_OR_BELOW OBS_THRESH NUM_ITER_THRESH (only if ALT_TERM is non-zero)

NOBS_REPORT

OBS_REPORT_1 OBS_REPORT_2 OBS_REPORT_3..(NOBS_REPORT items)

++# This line is a comment as are all lines that begin with “++#”

++# PEST++ input is parsed using key words that can be specified in any order

++ MAX_N_SUPER(20) SUPER_EIGTHRES(1.0E-8)

++ N_ITER_BASE(1) N_ITER_SUPER(3)

++ SVD_PACK(PROPACK) AUTO_NORM(4)

++ LAMBDAS(0.1,1,10,100,1000)

++ MAX_SUPER_FRZ_ITER(5)

++ MAX_REG_ITER(20)

 8

++ MAT_INV(inv_type)

++ SUPER_RELPARMAX(sup_relpar_max)

++ MAX_RUN_FAIL(3)

++ ITERATION_SUMMARY(TRUE)

++ DER_FORGIVE(TRUE)

++ UNCERTAINTY(TRUE)

++ FORECASTS(pred_1,pred_2,pred_3)

++ PARAMETER_COVARIANCE(prior_parameter.cov)

++ OVERDUE_RESCHED_FAC(2.0)

++ OVERDUE_GIVEUP_FAC(10.0)

 9

Variables in “control data” section of PEST control file.

Variable Type Values Description
RSTFLE Text “restart” or “norestart” Instructs PEST whether to write restart data.

PESTMODE Text “estimation”,

“prediction”,

“regularisation”,

“pareto”

PEST’s mode of operation.

NPAR Integer greater than 0 Number of parameters.

NUMCOM Integer optional; greater than

zero

Number of command lines used to run model.

RELPARMAX Real greater than 0 Parameter relative change limit.

FACPARMAX Real greater than 1 Parameter factor change limit.

FACORIG Real between 0 and 1 Minimum fraction of original parameter value in

evaluating relative change.

PHIREDSWH Real between 0 and 1 Sets objective function change for introduction

of central derivatives.

NOPTMAX Integer −2, −1, 0, or any number

greater than 0

Number of optimization iterations.

PHIREDSTP Real greater than 0 Relative objective function reduction triggering

termination.

NPHISTP Integer greater than 0 Number of successive iterations over which

PHIREDSTP applies.

NPHINORED Integer greater than 0 Number of iterations since last drop in objective

function to trigger termination.

RELPARSTP Real greater than 0 Maximum relative parameter change triggering

termination.

NRELPAR Integer greater than 0 Number of successive iterations over which

RELPARSTP applies.

Variables in optional “singular value decomposition” section of PEST control file.

Variable Type Values Description
MAXSING Integer greater than 0 Number of singular values at which truncation

occurs.

EIGTHRESH Real 0 or greater, but less than

1

Eigenvalue ratio threshold for truncation.

EIGWRITE Integer 0 or 1 Determines content of SVD output file.

 10

Variables required for each parameter group in “parameter groups” section of PEST control file.

Variable Type Values Description
PARGPNME Text 12 characters or less Parameter group name.

INCTYP Text “relative”, “absolute”,

“rel_to_max”

Method by which parameter increments are

calculated.

DERINC Real greater than 0 Absolute or relative parameter increment.

DERINCLB Real 0 or greater Absolute lower bound of relative parameter

increment.

FORCEN Text “switch”, “always_2”,

“always_3”, “switch_5”,

“always_5”

Determines whether central derivatives

calculation is undertaken and whether three

points or four points are employed in central

derivatives calculation.

DERINCMUL Real greater than 0 Derivative increment multiplier when

undertaking central derivatives calculation.

DERMTHD Text “parabolic”,

“outside_pts”, “best_fit”,

“minvar”, “maxprec”

Method of central derivatives calculation.

PEST++ V3 only supports “parabolic”

Variables required for each parameter in “parameter data” section of PEST control file.

Variable Type Values Description
PARNME Text 12 characters or less Parameter name.

PARTRANS Text “log”, “none”, “fixed”,

“tied”

Parameter transformation.

PARCHGLIM Text “relative”, “factor”, or

absolute(n)

Type of parameter change limit.

PARVAL1 Real any real number Initial parameter value.

PARLBND Real less than or equal to

PARVAL1

Parameter lower bound.

PARUBND Real greater than or equal to

PARVAL1

Parameter upper bound.

PARGP Text 12 characters or less Parameter group name.

SCALE Real any number other than 0 Multiplication factor for parameter.

OFFSET Real any number Number to add to parameter.

DERCOM Integer 0 or greater Model command line used in computing

parameter increments.

PARTIED Text 12 characters or less The name of the parameter to which another

parameter is tied.

 11

 12

Variables required for each observation group in “observation groups” section of PEST control

file.

Variable Type Values Description
OBGNME Text 12 characters or less Observation group name.

Variables required for each observation in “observation data” section of PEST control file.

Variable Type Values Description
OBSNME Text 20 characters or less Observation name.

OBSVAL Real any number Measured value of observation.

WEIGHT Real 0or greater Observation weight.

OBGNME Text 12 characters or less Observation group to which observation

assigned.

Variables in “model command line” section of PEST control file.

Variable Type Values Description
COMLINE Text system command Command to run model.

Variables in “model input/output” section of PEST control file.

Variable Type Values Description
TEMPFLE Text a filename Template file.

INFLE Text a filename Model input file.

INSFLE Text a filename Instruction file.

OUTFLE Text a filename Model output file.

Variables in “prior information” section of PEST control file.

 13

Variable Type Values Description
PILBL Text 20 characters or less Name of prior information equation.

PIFAC Text real number other than 0 Parameter value factor.

PARNME Text 12 characters or less Parameter name.

PIVAL Real any number “Observed value” of prior information.

WEIGHT Real 0 or greater Prior information weight.

OBGNME Text 12 characters or less Observation group name.

 14

Variables in optional “regularization” section of PEST control file.

Variable Type Values Description
PHIMLIM Real greater than 0 Target measurement objective function.

PHIMACCEPT Real greater than PHIMLIM Acceptable measurement objective function.

FRACPHIM Real optional; 0 or greater, but

less than 1

Set target measurement objective function at

this fraction of current measurement objective

function.

MEMSAVE Text “memsave” or

“nomemsave”

Activate conservation of memory at cost of

execution speed and quantity of model output.

WFINIT Real greater than 0 Initial regularization weight factor.

WFMIN Real greater than 0 Minimum regularization weight factor.

WFMAX Real greater than WFMAX Maximum regularization weight factor.

LINREG Text “linreg” or “nonlinreg” Informs PEST that all regularization

constraints are linear.

REGCONTINUE Text “continue” or

“nocontinue”

Instructs PEST to continue minimizing

regularization objective function even if

measurement objective function is less than

PHIMLIM.

WFFAC Real greater than 1 Regularization weight factor adjustment factor.

WFTOL Real greater than 0 Convergence criterion for regularization

weight factor.

IREGADJ Integer 0, 1, 2, 3, 4, or 5 Instructs PEST to perform inter-regularization

group weight factor adjustment, or to compute

new relative weights for regularization

observations and prior information equations.

NOPTREGADJ Integer 1 or greater The optimization iteration interval for

recalculation of regularization weights if

IREGADJ is 4 or 5.

REGWEIGHTRAT Real absolute value of 1 or

greater

The ratio of highest to lowest regularization

weight; spread is logarithmic with null space

projection if set negative.

REGSINGTHRESH Real less than 1 and greater than

0

Singular value of x
t
qx (as factor of highest

singular value) at which use of higher

regularization weights commences if

IREGADJ is set to 5.

PEST++ Additions to the PEST Control File

Information in the PEST control file specific to PEST++ is marked by lines starting with “++”.

Although the examples provided in this report place all PEST++ input in a single section at the end of

the PEST control file, this is not a requirement. This information does not need to be contiguous and can

 15

reside anywhere in the file. Lines starting with “++#” are considered comments and are ignored by

PEST and PEST++.

Unlike the rest of the PEST control file, PEST++ uses keywords rather than location to specify

variables. Lines are parsed using the space, tab, and parenthesis characters as separators. Although one

can use parentheses to more clearly delineate the values assigned to the variable (for example,

++N_ITER_BASE(1) specifies N_ITER_BASE=1), these could just as well be replaced by white spaces

(for example, ++N_ITER_BASE 1 also specifies N_ITER_BASE=1). Table 1–2 includes a listing and

explanation of the permissible PEST++ keywords.

Table 1–2. PEST++ optional arguments.

Variable Type Values Description
N_ITER_BASE Integer 1 or greater Number of base parameter iterations

performed for each superparameter

iteration.

N_ITER_SUPER Integer 0 or greater Number of superparameter iterations

performed for each base parameter

iteration.

SUPER_EIGTHRES Real any positive number

(typically should be

greater than 1.0E−7)

PEST++ will not include any

superparameters whose ratio with the

largest superparameter is less than this

ratio. This value can as small as zero if the

user wants to specify the number of

superparameters solely with

MAX_N_SUPER. Because PEST++uses

SVD on the superparameter problem, a

low value for this SUPER_EIGTHRES

will not adversely impact the stability of

the solution.

MAX_N_SUPER Integer integer between 1 and

the minimum either

of maximum number

of parameters or the

maximum number of

observations

Maximum number of superparameters to

use in the superparameter iterations.

 16

MAX_REG_ITER

Integer integer greater than 1;

default is 20

Provides a limit on the maximum the

number of iterations used to compute

dynamic regularization weights when

PEST++ is run in regularization mode.

Setting this value too large can result in

appreciable slowdown, especially in early

iterations.

MAX_SUPER_FRZ_ITER Integer 1 or greater; default

value is 5

Maximum number of times a

superparameter iteration will try to freeze

any parameters that go out of bounds and

try to recompute a Jacobian. If the

Jacobian cannot be computed in

MAX_SUPER_FRZ_ITER iterations,

PEST++ will switch to a base parameter

iteration.

AUTO_NORM(4) Integer 1 or greater; default is

no scaling

Automatically normalizes the sensitivities

by assuming there are X standard

deviations between the upper and lower

parameter bounds, where X is the value

passed with the AUTO_NORM variable (4

is shown).

SVD_PACK(PROPACK) String

“JACOBI” or

“PROPACK; default

is “JACOBI”

Flag to use PROPACK to compute SVD

factorizations. “JACOBI” is the SVD

provided by the EIGEN library;

“PROPACK” is the iterative SVD

factorization suitable for large problems.

MAT_INV String “Q1/2J” or “JTQJ”;

default is “JTQJ”

Flag to specify the formulation of the

normal equation. This option is forced to

“Q1/2J” when PROPACK is used.

SUPER_RELPARMAX Real greater than 0; default

is 0.1
Parameter relative change limit for

superparameters.

MAX_RUN_FAIL Integer greater than 0; default

is 3
Maximum times the run manager will try

to rerun a failed run.

LAMBDAS Comma-

separated list

of reals

greater than 0; default

is

(0.01,1,10,100,1000)

Specify the standard values of lambda to

be used each iteration.

ITERATION_SUMMARY Boolean “TRUE” or

“FALSE”; default is

“TRUE”

Setting this to “TRUE” will save a

summary of each iteration to a series of

comma-separated files for easy plotting.

DER_FORGIVE Boolean “TRUE” or

“FALSE”; default is

“TRUE”

Setting this to “FALSE” will turn off

derivative forgive and cause PEST++ to

terminate if a run fails while computing

the Jacobian.

OVERDUE_RESCHED_FAC Real YAMR option to specify when an overdue

run will be rescheduled. Runs are

rescheduled when they are overdue by

OVERDUE_RESCHED_FAC * average

run time

 17

OVERDUE_GIVEUP_FAC Real YAMR option to specify when an overdue

run will be aborted. Runs are aborted

when they are overdue by

OVERDUE_GIVEUP_FAC * average run

time

UNCERTAINTY Boolean “TRUE” or

“FALSE”; default is

“TRUE”

A flag to disable uncertainty analyses.

FORECASTS Comma

separated list

of text

Observation names in

the control file;

default is none

The names of observations to treat as

forecasts in the uncertainty analyses.

PARAMETER_COVARIANCE Text Filename; default is

none

The name of a PEST-compatible ASCII

matrix or uncertainty file to use as the

prior parameter covariance matrix.

OVERDUE_RESCHED_FAC Real greater than 1.0;

default is 1.15

YAMR specific command. If a model run

takes longer than

(OVERDUE_RESCHED_FAC * the

average runtime) it will rescheduled on

another node if one is available

OVERDUE_GIVEUP_FAC Real greater than 1.0;

default is 100.0

YAMR specific command. If a model run

has been running longer than

(OVERDUE_GIVEUP_FAC * the

average runtime) it will canceled

 18

The YAMR Worker Control File (.ymr)

The variable within the optional YAMR worker control file are listed below. This list is

followed by short explanation of each variable used by PEST++.

* model command line

COMLINE

(one such line for each of NUMCOM command lines)

* model input

TEMPFLE INFLE

(one such line for each of NTPLFLE template files)

* model output

INSFLE OUTFLE

(one such line for each of NINSLFE instruction files)

Variables in “model command line” section of YAMR worker control file.

Variable Type Values Description
COMLINE Text system command Command to run model.

Variables in “model input” section of YAMR worker control file.

Variable Type Values Description
TEMPFLE Text a filename Template file.

INFLE Text a filename Model input file.

Variables in “model output” section of YAMR worker control file.

Variable Type Values Description
INSFLE Text a filename Instruction file.

OUTFLE Text a filename Model output file.

 19

References

Doherty, John, 2010, Addendum to the PEST manual: Brisbane, Australia, Watermark Numerical

Computing.

Doherty, John, 2011a, PEST surface water utilities: Brisbane, Australia, Watermark Numerical

Computing.

Doherty, John, 2011b, Groundwater data utilities: Brisbane, Australia, Watermark Numerical

Computing.

Muffels, C.T., Schreüder, W.A., Doherty, J.E., Karanovic, M., Tonkin, M.J., Hunt, R.J., and Welter,

D.E., 2012, Approaches in highly parameterized inversion––GENIE, A general model-independent

TCP/IP run manager: U.S. Geological Survey Techniques and Methods, book 7, chap. C6, 26 p.,

http://pubs.usgs.gov/tm/tm7c6/.

Schreüder, W.A., 2009, Running BeoPEST, in Tonkin, M.J., ed. Proceedings, PEST Conference 2009,

Potomac, Md., November 1–3, 2009: Bethesda, Md., S.S. Papadopulos and Associates, p. 228–240.

http://pubs.usgs.gov/tm/tm7c6/

 20

GSA++ Implementation and Use

GSA++ shares a common command line with PEST++ as well as the input control, template

files, and instruction file. Algorithmic variables that control the behavior of GSA++ are stored in a text

file with a .gsa suffix. For example, control variables specific to the Method of Morris must be specified

in a file that has the same base name the PEST control file, but with a .gsa extension. The variables in

this file are shown in figure 6–1.

Figure 6–1. Example GSA++ input file for Method of Morris analysis.

METHOD(MORRIS)

MORRIS_R(4)

MORRIS_P(4)

MORRIS_DELTA(.666)

MORRIS_POOLED_OBS(FALSE)

 21

General GSA++ Options

Variable Type Values Description
METHOD Text “MORRIS”,

“SOBOL” or

“TORNADO”

Specifies type of analysis to be performed.

RAND_SEED Unsigned

integer

 Seed for the random number generator.

GSA++ Options Specific to Method of Morris

Variable Type Values Description
MORRIS_R Integer positive integer Sample size. The number of times the

sensitivity will be computed for each

parameter.

MORRIS_P Integer positive integer Number of levels or the number of points at

which each parameter is sampled.

MORRIS_DELTA Real multiple of

where

p=MORRIS_P

Size of the sampling step. This must be a

multiple of and represent the size

of the interval that will be used to calculate the

sensitivities.

MORRIS_POOLED_OBS Text “TRUE” or

“FALSE”;

default is

“FALSE”

MORRIS_OBS_SEN Text TRUE” or

“FALSE”;

default is

“TRUE”

A value of “TRUE” instructs GSA++ to

perform the Method of Method sensitivity for

each observation.

 22

GSA++ Options Specific to the Method of Sobol

Variable Type Values Description

SOBOL_SAMPLES Long

integer

positive integer Size of the samples to be used in Sobol’s

method when computing sample variances.

This is “n” in the equation s
2
 = Σ (xi − x)

2
 /

(n − 1).

SOBOL_PAR_DIST String “NORM”

“UNIF”

Specifies whether the parameter samples should

be drawn from a uniform or normal

distribution. If the parameters are assumed to

be uniformly distributed use “UNIF”;

otherwise, if the parameters are normally

distributed, use “NORM”.

GSA++ Output Files for the Method of Morris

The GSA++ implementation produces two output files summarizing the global sensitivity

analysis. The Morris sensitivity file (.msn) is the primary output file which contains the metric

associated with the Method of Morris analysis. The file contains a header line describing the

information stored in the file, which consists of parameter_name, sen_mean(μ), sen_mean_abs(μ*), and

sen_std_dev(σ). Each subsequent line contains the metrics for one of the adjustable parameters. In

addition to the .msn file, a raw sensitivity file (.raw) is also written which summarizes the raw model

output that was used to compute the information stored in the .msn file. Each line stores a single

sensitivity computed from a pair of model runs where phi_0, phi_1 are the values of the objective

function used to compute the sensitivity; par_0, par_1 are the values of the adjustable parameter used to

compute the sensitivity; and sen is the sensitivity.

 23

Figure 6–2. Example Morris sensitivity (.msn) file.

Figure 6–3. Example raw sensitivity (.raw) file.

GSA++ Output Files for Sobol’s Method

GSA++ Output Files for Tornado Plots

parameter_name, phi_0, phi_1, par_0, par_1, sen

X1, 128.437, 84.7042, 0.999999, 0.333333, 65.5993

X2, 114.144, 128.437, 0.666666, 0, -21.4395

.

parameter_name, sen_mean, sen_mean_abs, sen_std_dev

X1, -16.4665, 108.885, 138.542

X2, 53.5115, 72.4633, 98.2834

.

.

.

X19, -2.32365, 5.56711, 6.42093

X20, -0.0338625, 2.83062, 3.88215

